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Summary of Computational Neuroscience Project:
Testing the Threshold of Human Vision

Primary Goal: Perform a “psychophysical” experiment to estimate the minimum number of
photons required for a human observer to say that he/she saw the stimulus (a flash of light).

Psychophysics is the study of the relationship between physical stimuli (light, sound, touch,...)
and how they are perceived (by our eyes, ears, skin,...)

Experimental Tools:
e LED light source (green light, 505 nm), a computer monitor (to fixate the eye), a

microcontroller that controls the photons emitted by the LED, and computer software
(Matlab/Psychophysics Toolbox) to control the light stimulus and record user responses

Mathematical Tools:
e Basic concepts of probability and random variables (light source produces randomness,

user perceptions and responses produce randomness, etc): Did you “see it” or not?
* Probability distributions, specifically the Poisson distribution (appropriate for our visual

experiment)
e Curve fitting algorithms to fit our experimental data to the mathematical model

(associated with the Poisson probability distribution)




Experimental Setup
(to take place in a dark room)

Exerlental Setup FDU Electrical Engineering students participating in the

N, project: Mahamuge Ruwan Costa and Anirudh Bhatotia

L

Observer fixates vision on a red fixation dot on the computer monitor.

Green LED (505nm) atop the monitor flashes at various intensities, resulting in variable photon fluxes at the eye.
Observer indicates through keyboard input whether he or she saw the LED flash.

Responses are analyzed assuming Poisson statistics for the photon absorptions at the retina, from which one may
infer the minimal number of photons required to elicit an “I saw it” response from observers (i.e. on 60% of trials).
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‘ Schedule

Week 1

e Introduction to the Early Visual Pathway and the Retina

* Discuss how Retinal Rods “count photons”

e Outline the classic experiment by Hecht, Schlaer, and Pirenne (1942) to estimate the
minimal number of photons required for a human observer to say that he “saw the
flash” up to 60% of the time

* Introduction to the mathematical software package MATLAB

e Introduction to Probability and Random Events

 Bernoulli trials, Binomial Distribution, Poisson Distribution and associated class
exercises

Week 2

e Collect experimental data (in groups of 4)
e Learn how to fit probability models (Poisson model) to noisy experimental data

Week 3

* Analyze experimental data and fit it to the Poisson probability model

e Interpret the results and draw a conclusion about the minimal number of photons
required to evoke a visual

Write up the results and conclusions of the data analysis. Be prepared to discuss your
results in a mock scientific conference poster presentation (final week)




‘ YouTube Tutorials on the Retina

CRAIG BLACKWELL, MD Santa Cruz, CA
OPHTHALMOLOGY Diplomate: American Board of Ophthalmology
Fellow: American Academy of Ophthalmology

HOME

THE DOCTORS

EYE SERVICES
LOCATIOMN/CONTACT

OPTICAL SHOP

WELCOME

PATIENT FORMS
An Ophthalmology Practice in Santa Cruz, CA

Colin Blackwell (UC Santa Cruz) website:
http://www.blackwelleyesight.com/eye-care-articles/380/

Particularly relevant video: “The image: Retina, Optic Nerve, and Brain”
http://www.youtube.com/watch?v=ajnsDVsP0OUk




The Visual System

Light patterns = visual representation in the brain

Spikes propagate along axon to other cells

Spike Train (action potentials)
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Visual Perception and Decoding

Brain must interpret an abstraction of the visual scene: spike trains, graded potentials, etc.

Encoded Neural Activity (i.e. spike rates) at each location
What's this?
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Cool Visual lllusions 1 (just for fun)

The “scintillating grid effect”




Cool Visual lllusions 1 (just for fun)

Motion effects due to “saccadic eye movements”




The Eye

Choroid

Ciliary body

Fig. 1. A drawing of a section through the human eye with a
schematic enlargement of the retina




Retina

Visual processing begins in the retina
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Rod/Cone Density in the Retina

Flash stimulus location will be chosen to “hit” the maximum density of rods in the eye
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Classical vs Quantum View of Light Energy

Einstein’s Quantum View:
Light is distributed as discrete
packets of energy (photons!)

Classical View: Light is an electromagnetic
travelling wave distributed continuously in space

Photon with
energy hf

(b)

Albert Einstein correctly suggested that the energy of light is not distributed evenly in
space as a classical electromagnetic wave as in figure (a), but is rather concentrated in
discrete regions (quanta/photons) which each contain an energy E = hf

E =energy of each photon
h = Planck’s constant Rods and Cones respond to individual photons
f =frequency of light (cycles/second)




Rods and Cones

Relative absorbance

At low light levels (dark room, nighttime, ...) rods control early vision and cones are

not responsive
At higher light levels the cones (RED, GREEN, BLUE) control the earliest visual

responses

Visible Spectrum Electron Micrograph of Rods and Cones

Blue Fod Green Red

cone cone  cone — ' -

400 450 500 550 600 650 700

Wavelength (nm)




Rhodopsin: The Rod Pigment That Absorbs Light (photons)

Rhodospin is the light absorbing pigment in the rods. In this way the light images formed on the retina are converted into
electrochemical signals for the brain to interpret.

As rhodospin absorbs light, it changes its shape causing a decrease in the amount of inhibitory neurotransmitters in the synpases
between photoreceptor cells and bipolar cells. Rhodospins allow the ability to see shades of grey, black and white. There is only one
type of rod and their rhodospin which are sensitive to blue —green light.

As light hits the rhodospin it causes a chemical change which creates decomposition. The active rhodospin changes the charge of rod
cell and creates an electric current along the cell. This electric message is sent along the rod to the ganglion, which is connected to
the optic nerve. The optic nerve sends the message to the visual cortex so light will be interpreted into an image.
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Rod Responses to Brief Pulses of Light

Rod “suction electrode” recordings (Rieke & Baylor, 1998)

(a) (b)
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Rod Responses Are Quantized

Rod responses to light pulses (measured by current) occur as discrete jumps.
Reponses show no response above noise level (0 photons absorbed), 1 photon absorbed,
2 photons absorbed, etc.

2 photons absorbed — singles
. — failures
1 photon
2 pA
P |: 0 photons
| N N NN (N N NN NN NN SN N el
1 L |
| | L 1 ] | -
0 5 10 15 20 25 00 _ 05 LU
S
S5eC
S0  Distribution of response amplitudes shows
N E 0.5 pﬁ[ the effect of quantization.
- * Do human observers respond with similar
4 sec variability in psychophysical measurements
- (saw the flash or not)?
] E— e Is the randomness of natural phenomena
I | i | i .
10 1 2 3 reflected in an observer’s responses? (YES)




Experiment of Hecht, Schlaer, and Pirenne (1942)

* Using themselves as experimental subjects, they flashed a light at various intensities in “dark adapted”
conditions

e At each light intensity they tallied the number of “yes” (saw it) and “no” (didn’t) trials

* Plotted the “frequency of seeing” vs “light intensity”

* Fit results to a probabilistic model, assuming human observations (even under nominally identical experimental
conditions) mirror the randomness of nature

1 T o=

s
osl ©  Hecht El]‘%
O Shiasr
& Pirenne
08 k=5 %
2| :} ' * Poisson model has 1 free parameter K
D oe .
2° % ' e “Best fit” K value corresponded to the
8 } 1 minimal # photons required to see the
" ﬁ stimulus on at least 60% of the trials
02
o I %ﬁ I  Note: There are really 2 free parameters
° o " if you include a variable that allows us to
(inferred) mean number of photons at the retina e - .
slide” the curve horizontally along the
FIG. 2 Probability of seeing calculated from Eq. (2), with the intenSity axis. This corrects for SUbject
threshold photon count K = 6, compared with experimental ) ) . )
results from Hecht, Shlaer and Pirenne. For each observer we differences associated with age, eye

can find the value of & that provides the best fit, and then
plot all the data on a common scale as shown here. Error bars
are computed on the assumption that each trial is indepen-
dent, which probably generates errors bars that are slightly
too small.

composition, and so forth.




Basic Idea Behind the Data Fitting to the Hecht, Schlaer, and Pirenne experiment

1

oaf e The “K” parameter controls

the shape of the theoretical
curve

08F
07r

08t  The “o” parameter controls

o5} Y B LR 2 for effects of different
observers (i.e. eye
degeneration) and serves to
shift the curves along the
horizontal axis

04F

03fF

probability of seeing

n2F

0afF

* The best fit value “K” is the
00| 0.1 | o 100 visual threshold parameter
we seek: the minimum
number of photons required

FIG. 1 Probability of seeing calculated from Eq. (2), where for an observer to reliably see

the intnesity I is measured as the mean number of photons the light flash

incident on the cornea, so that a is dimensionless. Curves are

shown for different values of the threshold photon count X'« \We will describe the specifics
and the scaling factor a. Note the distinct shapes for different
K, but when we change o at fixed K we just translate the
curve along the the log intensity axis, as shown by the red
dashed arrow,

light intensity (mean number of photons at the cornea)

of this “Poisson Model” later




Switching Gears: Matlab and Probability Theory

* In order to model the randomness of photon absorptions, and the
randomness inherent in psychophysical experiments, we need the
mathematical language of Probability and Random Experiments
(experiments with random outcomes)

 We will recreate the Hecht, Schlaer, and Pirenne (1942) experiment using
green LEDs as the light source (week 2)

e Once the data is collected, we need to fit it to our probability model (week
3). This will involve the so-called Poisson probability distribution.

e We will use the mathematical software program MATLAB to do most of our
data analysis, so we need to learn the basics of the software.

* Now begins the mathematical and computational portion of the session....




Introduction to Matlab 1 (basic algebra)

Command Window +1 O A X

"'?" Mew to MATLAB? Watch this Video, see Demes, or read Getting Started.

> x = 5 % As=ign numerical values to wvariables
*»» vy = 10;

> omult = mxvy T multiply two numbers

multc =

S0
> odiv = ®fy % divide two numbers

div =

> add = X + ¥ + add two numbers
add =
15
>» subt = x - ¥ ¥ subtract two numbers
subt =
-5

Jx 5>

-

»




Introduction to Matlab 2 (defining vectors)

Command Window

'I' Mew to MATLAB? Watch this Video, see Demos, or read Getting Started.

» X = 0:.2:1 % array of numbers from 0 to 1, increments of 0.2
x =
0 0.2000 0.4000 0.8000 0.8000 1.0000
> X2 % sguare each number element by element
ans =
0 0.0400 0.16800 0.36800 0.6400 1.0000
>»> ¥ = eXpl(x) % define a function of = (natural exponential)
¥ =
1.0000 1.2214 1.4918 1.8221 2.2255 2.7183
> ¥./x % divide x into ¥y element by element (note the dot operator

> K(3) % extract the 3rd element of the array =
ans =
0.4000
> x(2:4) i extract elements 2 through 4 of the wvector x

ans =

0.2000 0.4000 0.6000

+1 [ A =
x

E

m




Introduction to Matlab 3 (plot a function of x)

Command Window 1[0 2 x

'1?3 Mew to MATLABT Watch this Video, see Demos, or read Getting Started. X

> ® = linspace (0,2*%pi,50) % another way to define an array (vector), S50 elements
== ¥

=in(x) % define the =sine function over this domain of points x
> plotc{x, v, "'r-', '"linewidch',2); % open= a figure window and plots v v2. X

>» xlabel('"x', "fontweight', 'bold'): % add x-axis label
>>» ylabel {('v', "fontweight', "bold'); % add y—-axis label (note how figure i=s updated)
*>>» title('Plot of vy

sin(x) "', "font=size',14); % put a title on the graph

J% >» help plot % how to get help with the "plot"™ function within Matlab command window

Plot of y = sin(x)

0.8

0.6

0.4

0.2

0.2

-0.4

-0.6

-0.8

»>» print -dpng -r400 -painters untitled.png; ¥ output figure as PHG image file

_ﬁg »> help print % get help with "print"™ function




Introduction to Matlab 4 (doing work within an m-file)

For longer computations and programs you will want to write Matlab code within an
editable file called a “Matlab m-file” (with file extension .m)

File Edit Text Go Cell Tools Debug Desktop Window Help

A AR

JJ {ﬂ. £ _ u"fl o/ L GRS -| o4 .1- = ﬁ, Bl - EI ¥ B RE BSE Stack:| Base f-"E H O A 5@

EE| -0 |+ | 11 | x |EE| O

? This file uses Cell Mode. For informaticn, see the rapid code iteration video, the publishing video, or help.

1 %% Plot the natuoral exponential fonction exp(x) over 50 egqnally spaced points on the x-domain [—4,4]
2 % Al=o plot the function y = =x."3 on the =zame figure

g = ¥ = linspace (-3, 3,50) ; % note that a semi-colon suppresses output to the Matlab command window

4 — ¥l = eXp{xX); T exponential function (base "e™)

e vy2 = x."3; % define another function to plot

6

= figure % this opens a blank figure window (but "plot™ will open one by default anyway)

B pPloc(x,vl, 'b-"',"1linewidth"',2); ¥ plots the first function (blue color)

g = hold ong; % hold function "freezes"™ the figure in case you draw more curves on it (which

bl = plot (x;yv2, 'Tr—", "1linewidth';2):; % plots the second function (red color)

T = xlabel ('x", '"fontweight!, "bold"', "font=ize' 14); % x—axis label

HE: = yvliabel 'y = f(x)"', '"Tontweight', "bold', '"fontsize' ,14) ; ¥ y—axis label

5 B Eitle{'Demo: plotting two curves on same graph', 'fontweight', 'bold'):;

14 — legend('y = e™{x}",'v = x"{3}"', "Location"', "Northwest"'): $ adds a legend =0 we know which curve 13
G = grid omn; % ‘adds grid lines to the figure

18

17 % Can rn thi=z file by clicking the green arrow in the menuo bar above (scroll over it!)
18 T Or you can type "castiFunctionPlot™ (without the .m extension) at the Matlab command window prompt
T % »» castiFunctionPlot

-

This file is provided to you in your folder: “castiFunctionPlot.m”

X




Introduction to Matlab 5 (result of “castiFunctionPlot.m”)

Demo: plotting two curves on same graph
30

20

10

y = f(x)

10 -

20+ i

-30 | | | | |




Matlab Exercise (plotting functions)

e Create a new Matlab m-file: “myFunctionPlot.m” and copy/paste my
code “castiFunctionPlot.m” into the editor (or you can copy the file and
rename it)

 Modify the m-file to make the plot described below

e Play with the plot function (use the documentation “doc” or the “help”)
and change line thicknesses, colors, annotations, or whatever you like

e To compute x! in Matlab use factorial(x) (x must be an integer)

Plot the following two functions on the same graph over the domain x e [O, 20]
using the gridpoints defined in Matlab by >>x=0:1:20

X

f,(x) = —Ie‘4 (Poisson distribution with rate A =4)
X!

10”
X1

f,(x)==—e™  (Poisson distribution with rate A =10)




Result of Matlab Exercise (plotting functions)

These curves correspond to the so-called “Poisson probability distribution” that
will be of great importance to us in our visual threshold modeling project

Class Matlab plot exercise
02 | [ I [ | I I | |

—8— Poisson (L =4)
——&— Poisson (L = 10)

f(x)

y

0.06 - -

0.04 - .




Random Processes and Vision: Yet Another Reminder that cellular

responses need a probabilistic description

Stimulus: Random luminance flicker at 160 Hz

Spike Raster (LGN Repeat Stlmulus)

128 Repeated Trials (same stimulus)

Neuron recording, cat visual thalamus (LGN)

time (sec)
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Basic Probability 1
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The origins of the Mathematical Theory of Probability are rooted in games of chance

Archaeological digs in the Middle East and India have revealed that people were
rolling dice (four-sided sheep bones) as early as 3500 BC.

Modern games with “random outcomes” include blackjack, craps, roulette. The
outcomes of such games and your likelihood of winning or losing must be described
using the mathematical language of Probability Theory

Other situations in which randomness (stochasticity) plays a crucial role in their
description and modeling includes financial markets, responses of rods and cones, and
traffic flow (i.e. number of cars passing a given intersection during rush hour)




Basic Probability 2: Random Experiments and Random Variables

Def: A random experiment is an experiment whose outcome cannot be predicted in
advance with 100% certainty.

Def: An event A is one possible outcome of a random experiment

Def: The sample space S is the set of all possible outcomes

Def: A random variable X is a function that maps an outcome A of an experiment

to a numerical value (note: in many cases the outcome is already a number)

Def: A probability function Pr(A) assigns a number 0<Pr(A)<1 toanevent A that
IS interpreted as the probability (likelihood) of that event occurring.

Examples of Random Experiments:

(1) Flip a fair coin 8 times and record the sequence of heats and tails (HHTHTTTH)
(2) Role two dice one time and record the total (i.e. 7)
(3) Record the number of photons emitted by a 100 msec flash of green light (i.e. 90)
(4) Measure the number of photons absorbed by a single rod cell in response to
flash of light with wavelength 505 nm (i.e. 0, 1, 2)
(5) Present a flash of light of a fixed intensity to a human subject's eye and ask whether
he/she saw it ("yes") or not ("no") (this is our experiment!)




Basic Probability 3: Coin Flipping Example (Bernoulli Trial)

Fair Coin
Random experiment: Flip a fair coin one time

Possible events: A, ={Heads} or A. ={Tails}

Random Variable: X (A, )=1, X(A;)=0 (assign 1 to heads and 0 to tails)

Probabilities of Events: P(AH)E p:% , P(AT)E1_p=%

Note: P(A,)+P(A )=1 since there are only these two possible outcomes

Unfair Coin

Random experiment: Flip an unfair coin one time

Possible events: A, ={Heads} or A ={Tails}

Random Variable: X (A, )=1, X(A;)=0 (assign 1 to heads and O to tails)
Probabilities of Events: P(A,)=p, P(A )=1-p

Call the event A, a "success" and the event A. a "failure”

This binary-type outcome (success or failure) is called a Bernoulli Trial

The discrete random variable X €{0,1} is called a Bernoulli Random Variable




Calculating Basic Probabilities

A =some event in a random experiment (i.e. throw 2 heads in 3 coin flips)
N = total number of possible outcomes

Def: N, =total number of ways that the event A can occur

Assuming all outcomes are equally likely

Pr{A} =2

Class Exercise

Experiment. Roll a fair six-sided die one time

Random Variable: X =number shown on die after the roll
Sample Space: S={1,2,3,4,5,6}
Event: A= {X < 2}

All possible rolls are equally likely.

Answer: Pr(A):l
Calculate the probability Pr{A! 3




Sequence of Bernoulli Trials (coin flipping)

Random experiment: Flip a loaded coin 3 times
Possible events (some): Ay ={HHT} , A ={TTT}, A,, ={2 heads},...
Probabilities of Events: Pr(A,)=p, Pr(A )=1-p

Question: Whatis Pr(A,,)=Pr{2 heads}?
There are 8 possible outcomes of the 3 flips:
S ={HHH,HHT,HTH, THH,HTT,THT ,TTH,TTT}

R B

Note: Can get 2 heads in 3 trials in a total of N, =3 possible ways.
There are N =8 total possible outcomes.
Each outcome is equally likely.

Thus Pr(AZH):%:g




Probability Mass Functions (PMF)

Def: The probability mass function (pmf) for a discrete random variable X is a function f(x)
with the following properties for any event A in the sample space S:
(1) f(x)>0 forall xeS (sample space)

(2) Z f(x)=1 (sum of probabilities of all possible events is 1)

XxeS

(3) Pr{XeAl=> f(x)

xeA

If the event A corresponds to just one value of the random variable X
(i.e. X =1 if you flip heads) then we have the more direct interpretation

Pr{X =x}=f(x)

Example: (single coin toss of a loaded coin)
X e{0,1} where X (Tails)=0 and X (Heads)=
1-p, x=0 (tails)

PMF: f(x)={
p, x=1 (heads)




Cumulative Distribution Functions (CDF)

Def: The cumulative distribution function (CDF) for a discrete random variable X isa
function F(x) satisfying
F(x)=Pr{X <x} Z f(

In words, the CDF F(x) is the probabilty that the random variable X is less than
or equal to a given value Xx.

The CDF for the Poisson probability mass function f (x\/l) will play a role later in

our analysis of the data from our visual psychophysics experiment.

Comment: the notation f (x\/i) means the PMF "given the value of the parameter 1",

It is called a conditional probability: f (x\/l) IS the probability of the event x occurring

conditioned on A having some known value (here the rate parameter of the Poisson process).



Binomial Distribution (PMF)

e Suppose we conduct a sequence of n Bernoulli trials (i.e. coin flips)

e Each of the N trials is a “success” with probability p or a “failure” with probability 1-p
The associated PMF for the number of successes X in n trials is called a Binomial
Distribution (or a Binomial Probability Mass Function)

Def: The binomial distribution is defined by the probabilty mass function

Pr{x = X} = f (X|n, p) = b(n’ p) — L:‘(] px (1_ p)n—x

n = total number of Bernoulli trials (binary)
p = probability of "success" (i.e. Heads) on any single Bernoulli trial

n n! : :
= (number of ways for x "successes™ in n trials)
x) x!{(n-x)!

X e{0,12,..,n} (sample space)

Binomial CDF. F(x) = Pr Zf(k|n D) Z[j K




Plots of the Binomial PMF and CDF
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Class Exercise: Using Binomial Distribution

Experiment: Suppose any lottery ticket purchased has a 20% chance of being a

winning ticket (any amount of money). Suppose you purchase 8 tickets, and let X
be a random variable indicating how many winning tickets you obtained.
Questions :

(1) Whatis Pr{X =2}? (2 winning tickets)
(2) Whatis Pr{X >1}? (atleast 1 winning ticket)

Use MATLAB to compute these probabilities: pdf(*bino’,x,n,p)
(answers on next slide)

Note: Pr{X >1}=Pr{X =1 +Pr{X =2} +..+Pr{X =8} =1-Pr{X =0}




Answer to Class Exercise: Using Binomial Distribution

Command Window ]2 X

’? Mew to MATLAB? Watch this Video, see Demos, or read Getting Started.

*» F Class exercise with binomial distribution
> n = 8; s number of Bermoulli trial
> p = W27 5 probability of "succeszs" on each trial
>»» 3 Answer to gquestion 1 (iprobably of 2 successes, or winning tickets)
»» probIWOwinners = pdf{'binoc',.2,.n,p)
probIWNOwinners =
0.2938
»» % Answer Lo question 2 (probably of 1 or more winming tickets)

>» probOnewinners0OrMore = 1 - pdf ('bino',0,n,p)

probOnewinnersOrMore =

0.8322

4




Preliminary Question Related to “Gombaud’s Challenge”

Question:  Suppose you roll a fair six-sided die many times in a row.

On average, how many times do you expect to have to roll the die before you have
better than 50/50 odds of throwing at least one 6?

e Isit 3times? 4 times?

- This is a famous problem in the history of gambling dating back to the 17th century

Answer: If you roll the die only 3 times, on less than half of your "experimental trials"
can you expect to throw at least one 6.

If you roll the die 4 times, then slightly more than half the time you can expect to throw
one or more sixes. (we will justify this mathematically)

Gombaud was a 17" century gambler who exploited this knowledge, which was obtained
empirically before the modern mathematical foundations of Probability were established.




Antoine Gombaud’s Challenge to Pascal

* Antoine Gombaud (aka the Chevalier de Mere) was a 17t century gambler
who challenged the laws of probability as they were known at the time
* He directed his challenge to Blaise Pascal in the form of a dice problem

Antoine Gombaud

Experiment: Roll a die 4 times and count the number of times a 6 is rolled Blaise Pascal

Question: What is the probability that you roll at least one 6 in 4 tries?

Answer : Can use the binomial distribution f (x\n, p) =b(n, p) to answer this question. “

p =% (probability of a "success™ that a 6 is rolled on any trial)
n=4

X 4—x
Probability Mass Function:  Pr{X = x successes} = f (x\n, p) :[xj p* (1- p)x ziij(%j (gj

where x€{0,1,2,3,4}

(total number of trials)

 Gombaud realized, through experience playing this dice game, that it was
advantageous to bet every time that he would throw a 6 at least once in 4 tries
e Pascal used the Laws of Probabilty to prove that this indeed a good betting strategy




Antoine Gombaud’s Challenge to Pascal (solution)

Event: A={X=>1} (1ormore6'srolledin4tries; n=4,p= %)

X

Pr{X =x} = (ﬂ(%}x (gjm (binomial distribution)

Pr{A} =Pr{X =1} +Pr{X =2} +Pr{X =3} +Pr{X =4/}

g (R {0l -

Pr{Al =0.5177

Conclusion: On average, more than half the time you will roll at least one 6 in 4 throws.
Therefore, if you bet even money it is to your advantage to bet that the event A will occur.




Class Project: Dice Rolling and Gombaud’s Challenge

(1) Play Gombaud's game and roll the dice for at least 20 trials. Record the number of
times you play the game (call it N) and the number of times you roll at least one 6 in 4 throws.

(2) Using your experimental results, calculate Pr{A} =Pr{1 or more 6's in 4 throws}. How close
is your empirical estimate to the true probability Pr{A}=0.5177?

(3) Suppose Gombaud's die is unfair and the probability of throwinga 6 is p = % What then is Pr(A)?

Modify the provided Matlab code Gombaud_Problem_Exact_Result.m

(4) Use Matlab to simulate this experiment N =100,1000,10000 times. Show that the empirical estimate
approaches the theoretical value Pr{A}=0.5177 as N gets larger.
Modify the provided Matlab code Gombaud_Problem_Simulation.m

(5) Tryto modify Gombaud_Problem_Simulation.m and loop over many more N values and generate
a plot of Pr(A) onthey-axis and N on the horizontal axis (see figure on next slide).



Simulation of Gombaud’s Challenge

(class should try to recreate something like this)

Pr(A)
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Probability of rolling one or more 6's in 4 trials (p = 0.166667)
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Pr(A) empirical
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Poisson Distribution

Poisson PMF (distribution)

« A Poisson random variable corresponds to a Binomial Random Variable in the limit

of a low probability of success: Iing where p = probability of success
p—

« In the special limits Iing (low success probability) and lim (infinite # trials)
p— Nn—o0

it can be shown that the Binomial PMF f (x

n, p)="b(n, p) is well-approximated by

f(X4)=Pr{X =x} :%X!el (Poisson PMF)

. /-f',: .!. ™
A=np (mean # events, or successes, per trial) LT
r%\‘: ----- -
et LA
,-ﬁ
e

Example (Rutherford, Geiger, and Bateman; 1910)

Suppose a sample of polonium is radiating « particles at a rate of 4 =0.5 (« particles/sec)
« The probability that the sample radiates X =2 particles in one unit of time (1 second) is

(ljz
5] 1
PF{X :Z}ZTe 2202061




Plots of Poisson PMF and CDF

Poisson PMF

Poisson CDF
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Examples where the Poisson probability model applies

(1) Thenumber of photons emitted by a flash of light of a (nominally) fixed intensity
Poisson rate parameter: A = (photons emitted)/flash

(2) Thenumber of photons absorbed by a rod responding to a flash of light
of a (nominally) fixed intensity
Poisson rate parameter: A = (photons absorbed)/flash

(3) Thenumber of typed errorsonasingle page of adocument
Poisson rate parameter. A = typos/page

(4) Thenumber of visitors to a website per minute
Poisson rate parameter. A = visitors/day

(5) Thenumber of Prussian army soliders killed by "'friendly'* horse kicks
inamonth (L. Von Bortkiewicz;1898)
Poisson rate parameter: A = soldiers/month




The Thing (1982)




Class Project: Show that Blair’s estimation was reasonable!

By some miracle of fortune, the estimate of 75% probability of 1 or more
infected camp members is actually consistent (roughly) with the situation
as described up to that point in the film

The Facts (spanning a total of about 4.5 days)

There was a Norwegian camp in Antarctica and an American camp (Outpost 31)

1) The Thing was dug out of an ice block by the Norwegians about 3 days prior to its
arrival at Outpost 31

2) Blair knew of 1 Norwegian man assimilated and 1 Norwegian dog (2 infections)

3) 2 dogs at Outpost 31 were assimilated within 1.5 days of the Thing’s arrival (2 more)

4) There were 6 Norwegians unaccounted for (assume 2 more infections)

5) This means roughly 6 infections in about 4.5 days time

6) Outpost 31 has n=12 camp members (including Blair himself)




Class Project: Outpost 31 Infection Probability Problem

Questions

(1) Assuming the number of "Thing infections™ per day is distributed as a Poisson process,
use the movie's information (and the given reasonable assumptions!) to estimate the
rate parameter A (infections/day) of the associated Poisson distribution.

(2) With 12 total camp members at Outpost 31, use the Poisson assumption to estimate the
probability Pr{X >1}, where X is the random variable (# infections in a random day)

(3) Assume that the time span of our "experiment" is one day. In other words, we ask what
Is the probability that one or more infections has occurred within the first day that "The Thing"
was at Outpost 31.

(4) The answer to part (2) should be pretty close to Blair's calculation from the movie.
Use MATLAB and your brain to find the exact value of the rate parameter A such that

Pr{X >1}=0.75




Thing Project: Solution

 The inferred Poisson rate parameter from the movieis (A= % :% Infections/day
. . T . . e A
» Using the Poisson model distribution  Pr{x infections|A} = f (x| 1) = |
X!

we have the following probability for the number of infections being 1 or greater:

Pr{x>1A} =Pr{x=1}+Pr{x=2}+..+Pr{x=12}
= f (1] A)+ f (2] 2)+...f (12| 2)
=1-Pr{x=0}

~1 10 4
€ A _1_e2-[0.7364

=1-f(1]2)=1-

Comment: We must technically assume there are an infinite number of camp members
(rather than 12) for this model to be valid (since the Poisson random variable has as
domain all non-negative integers)




Thing Project: Solution

Probability is miniscule out in the tails (x=12) for this problem, so our assumptions are okay

Poisson distribution for Thing problem: A =4/3
0.4 | T \ T |
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0.15
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Thing Project: Solution

Matlab code for plotting the Poisson distribution

%% Plot Poisson PMF for Blair's Thing infection calocunlation. Thi= plot demonstrates that

% the assumption of an infinite # of camp members (rather than 12) is not grossly in error
% s=since the pmf values are extremely small beyvond 7 or 8

rate = 4/3; % inferred wvalue from the film

x = 0:12; % Poisson BV domain

f = pdf {'Poi=s=s'",x,rate); % Poisson pmf

figure

plot(x,f, "k-"', "linewidth',2); hold on;
plot(x,f, 'r."', "'markersize',20);

xlabel ('x', "fontweight', "bold', "font=size',15);
ylabel ('f (x| lambda) "', 'fontweight', '"bold', 'fontsize"',15) ;

-

title ('Poisson distribution for Thing problem: “lambda

Il
1.3

3", "fontweight', 'bold', "font=size' ,14) ;

This file is provided to you in your folder: “plot_Poisson_PMF_Blair_Thing_problem.m”




Thing Project: Solution

« To get the rate parameter A that would give Blair's exact probability of 0.75
we solve

Prix>1A}=1-e*=> -
4
e’ :% (take natural logarithm of each side)
1

Infe " )=In| = |=-In4

)-n(3
—A=-In4d >
A=In4=1.386

« Compare this exact theoretical result with the approximation 4 ~1.33
derived from the events of the film. They're close!




Hecht, Schlaer, Pirenne (1942) Experiment (modernized)

. Dark adaptation, so that the eye is maximally sensitive to small amounts of light

. Subject will be presented with a series of light flashes of wavelength 505 nm.
There will be 7 flash intensities — each repeated 10 or 20 times - ranging from
nearly invisible to easily visible.

. Prior to each light flash the subject will fixate his or her right eye on a red cross
located approximately 20cm (20 visual degrees) to the right of the LED light
source in the visual field. This ensures that the light hits the part of the eye with
the maximal rod density.

. An audio cue (a beep) will alert the subject that a flash is about to be presented.

. A text message appears after the light flash asking the subject to respond YES
(saw the flash) or NO (didn’t see the flash).

. The “Probability of Seeing” the flash at each light intensity is given by the fraction
of trials that the subject responded “YES” (saw the flash).




HSP Experiment Demo

Run Demo Program (minus the light flashes) that

demonstrates what the subject will see on the monitor:

* Fixation Cross

 Audio Cues

e Trial Query (answer “YES” or “NQO”)

e 70 trials takes about 7 minutes to complete (10 repeated
trials per stimulus flash intensity)

e 140 trials takes about 15 minutes to complete (20
repeated trials per stimulus flash intensity)

YES Response: Hit “y” or “=>” keys
NO Response: Hit “n” or “€” keys




Mathematical Analysis of HSP Experiment

Poisson distributed photon arrivals: Assume that the number of photons x emitted for a

fixed flash intensity | follows a Poisson distribution:

e
X!

Pr{x photons given mean rate 1} =P (x|1)=

A = mean # photons per flash

e (al)
X!
- o is ascale factor that accounts for subject variability (age, eye composition, etc).
We will allow « to vary when fitting the model.
« | isthe intensity of the flash stimulus (photons emitted per flash)

Key Assumption: A=al — |P(x]|l)=

K 1)
Cumulative Distribution Function: Pr{x<K|I} Z P(x|1)=¢" Z@
x=0 X:

« This is the probability that between 0 and K photons are emltted at stimulus intensity |




Mathematical Analysis of HSP Experiment

« We now hypothesize that there is a minimum number of photons K required at any intensity |
in order for a subject to say "l saw it"

« For each stimulus intensity | we construct a "Probability of Seeing" function PSEE(I):
#trials stimulus seen at intensity |

P (1)=
see (1) # total times stimulus | shown
« If K or more photons are required at any stimulus | to see the flash, then our Poisson model

can be expressed in terms of the Poisson cumulative distribution function (CDF) F(K):

Pee (1)=Pr{x=K given 1} 2P (x]1) “'2 -
=1-Pr{x<K-1lgiven I} =1-F(K-1|1)

« This is the model we will fit to our experimental data.

« Piee (1) will be estimated empirically from the experiment.

« The two parameters {K,a} will be "fit" using a model optimization algorithm in Matlab.

« The parameter K will be interpreted as the minimum number of photons required for vision




Mathematical Analysis of HSP Experiment
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FIG. 1 Probability of seeing calculated from Eq. (2), where
the intnesity I is measured as the mean number of photons
incident on the cornea, so that « is dimensionless. Curves are
shown for different values of the threshold photon count K
and the scaling factor a. Note the distinct shapes for different
K, but when we change a at fixed K we just translate the
curve along the the log intensity axis, as shown by the red
dashed arrow.




HSP Experimental Results (Subject: Casti)

HSP experiment: 40 trials per stimulus

Subject = Casti (12/06/2012)
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Optimizing the Model Fit to the Data

Model: By (1)=6"" i (axll) -
x=K

Lab Data: P.,,(1;) where I,e{55, 61 62, 63, 64, 65, 66, 68, 75} (8 bit intensity scale)

—1FK1|)

- |, corresponds to the flash intensity for the j™ stimulus level used in the HSP experiment.
- With a photodetector one can determine the number of photons per flash for intensity I,
- However, when fitting the model we don't really care what the units of |, are (but these

specific physical units - energy per flash or #photons per flash - would have to be cited
to get your work published!)

2

Residual Function: R(K,a)= %i(&xp (1) =Puoo (1;))

=1

« N=9 (number of flash intensities used)
« This particular residual function (mean-square error) measures the model mismatch with data

+ Goal is to minimize R(K,a) by finding the optimal parameters (K, a,, |




Error Surface Visualization (Casti data)

* Brute force grid search: no optimization algorithm used
* This approach gives an initial idea of where the optimal parameters lie

Casti data: 12/06/2012
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Error Surface Visualization (Casti data)

e Here are 1D and 2D visualizations of the residual surface R
e 1D slice corresponds to the optimal a value

2D view Casti data: 12/06/2012 Residual Residual: 2D slice at optimal o ~ 14.05
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HSP Optimization Example: Casti data (12/06/2012)

Optimal Parameters: (K,a)=(919,14.07)

« K =919 is way too high; should be K ~6
« Model optimized using Matlab's "fminsearch™: HSP_fitModel fminSearch.m

HSP experiment: 40 trials per stimulus

Data
Best Fit
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HSP Optimization Example: Costa data (12/07/2012)

Optimal Parameters: (K,a)=(786,11.92)

« K =786 isalso way too high, but lower than Casti value
« This means that Costa had a lower visual threshold (possibly age related)

HSP experiment: 20 trials per stimulus
1 T T T
Data
Best Fit
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©

o
o)

- (K, a)=(786,11.92)

 Subject = kushanDA1

Prob(seeing)
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HSP Curves: Effect of Varying a Parameter (K=6)

Note that the “Casti data” (40 trials) is much steeper than the theoretical curves with K=6
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HSP Curves: Effect of Varying o Parameter (K=919)

K = 919 gives the better fit to the “Casti data” (40 trials)

Effect of changing o parameter
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Sources of “Error” in our HSP experiment

* Dark adaptation : Probably the most significant source of error. Visual sensitivity
increases dramatically the longer you light adapt. (see subsequent figure)

 Ambient light sources: Computer monitor emits detectable light. Computer lights,
mouse light, etc. This adversely affects optimal dark-adapted conditions.

* Non-uniform light source: Probably a great many of the incident photons are falling
into regions that have a low density of rods and a high density of cones (which are
unresponsive to this light frequency and the level of darkness) .

e Flash duration: LED flash duration (about 200 msec) is probably too long. Visual
threshold increases with flash duration (see subsequent figure).

* Foveal Fixation: Eye drift and improper fixation. It’s better to use a bite bar to
fix the subject’s head.

These sources of non-ideal experimental conditions should be cited in the “Discussion”
portion of your write-up to explain the result of an “optimal K value” being too large.




Experimental Error: Dark Adaptation

* Visual sensitivity experiments suggest that we should dark adapt for ~30 minutes
* Due to time constraints we only dark adapted for 2-3 minutes
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Fig. 2.1 Change in human visual sensitivity
as a function of time in the dark after ex-
1 1 ' ! L L posure to a bright light. [After Kohlrausch

0 5 10 15 20 25 30  (1931), curve for green light.]

Time in the dark after exposure to bright light (min)




Experimental Error: Non-Uniform Light Source

Optimal light source should fall within a disc of about 10 minutes of arc on the retina.
Our light is probably too diffuse and falls on low rod density regions (i.e. on the cones)

Fig. 2.13 Spacing of the rods, seen
end on, results in the loss of about half
of the incident quanta. The small
circles in this drawing are receptors of
a different kind (cones), which are
evidently inoperative at threshold in-
tensities in the dark-adapted eye.
[From Schultz (1866), periphery.]

Fig. 2.8 Semischematic representation
of the summation areas of the dark-
adapted human retina, 20° from the
fixation area (the fovea). Each small
circle represents the end view of a
rod, and each large circle represents
the area over which the excitations in
all the rods it contains summate., The
summation areas overlap, but the
actual extent of overlapping in the
eye is not known.




Experimental Error: Flash Duration

For flash durations greater than 100 msec more light is required to elicit a threshold
visual response (i.e. to see the flash 60% of the time or greater)

Threshold (log mean number of

quanta required for 60% seeing)

Fig 2.9 Total light required for seeing a
flash as a function of the duration of the

0.001 0.01 0.1 1.0 (sec) flash. [From Graham and Margaria (1935),
1 10 100 1000 (msec) 2’ curve.]
Duration of flash




More Sophisticated Optimization Approach
Matlab’s fminsearch (Simplex algorithm)

fminsearch

Find minimum of unconstrained multivariable function using derivative-free methad

Syntax

¥ = fminsearchifun, x0)

¥ = fminsearchifun,x0,options)

[x,fval] = fminsearchi...]
[x,fval,exitflag] = fminsearchi...)
[x,fval,exitflag,output] = fminsearchi...]

Description

fminsearch finds the minimum of a scalar function of several variables, starting at an initial estimate. This is generally referred to as wnconstrained
nonlinear optimization.

¥ = fminsearch|fun,=0) starts at the point =0 and returns a value = that is a local minimizer of the function described in fun. =0 can be a scalar,
vector, or matrix. fun is a function handle. See Function Handles in the MATLAB Programming documentation for more information.

FParameterizing Functions in the MATLAB Mathematics documentation explains how to pass additional parameters to your ohjective function fun. See
also Example 2 and Example 3 helow.

¥ = fminsearch|fun,=0,options) minimizes with the optimization parameters specified in the structure options. You can define these
Arguments

fun is the function to be minimized. It accepts an input = and returns a scalar £, the ohjective function evaluated at x. The function £un can he specified
as a function handle for a function file

x = fminsearch (fmyfun, =0)
where myfun is a function file such as

function £ = myfun(x)
£t= ... % Compute function valus at =

or as a function handle for an anonymous function, such as

¥ = fminsearchi(fi(x)sin{x~2), =x0):

Other arguments are described in the syntax descriptions above,



Optimization Example: Matlab’s fminsearch

f(x) =3ax" —4x° (a is constant, you choose it in Matlab code)

Minimum Value (Calculus): 3—f=12ax3—12x2=12x2(ax—1)=0 =
X

This file is provided to you in your folder: “fminsearch_Matlab_example.m”

function [zmin,fmin] = fminsearch Matlab example (a)

B
% Use Matlab's "fminsearch®™ to find tThe minimum value of a simple polyvnomial function.
3

% USAGE: [¥xmin, fmin] = fminsearch Matlab example (a)

¥ INPUT: a * {double) the parameter "a"

% OUTPUT : Xmin * (double) X wvalue at which £({x) is minimized

% fmin * {(double) the minimum value of £ (x)

3

% fix) = 3*a*x™q4 — 4*x"3

% "a" iz a free parameter

% Analytic Solution (using Calculus): ¥min = 1/a , fmin = -1/a"3

3

% Written by Alex Casti, FDU 12/07/72012

ol




Optimization Example: Matlab’s fminsearch

>» [Emin, fmin] = fminsearch_Hatlah_examplEiﬂf&];
a = 0.75
Humerical: (xmin , fmin) = (1.3333 , -2.37037)
Exact : (xmin , fmin) = (1.33333 , -2.37037)
e
fminsearch example: f(x) = 3ax*-4x3
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Optimize Your HSP Data with Matlab

i

%
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Now fit your experimental data to the Poisson model.

Use the provided Matlab file “HSP_fitModel _fminSearch.m”

This Matlab file is part of the suite of routines | wrote specifically for the analysis and
presentation of the HSP experiment.

unction [params,KOPT,ALPHAGPT] = HSP fitModel fminSearch(data,X,plotResults)
Analyze experimental data from the Hecht, Schlaer, Pirenne (1942} wisual threshold
experiment. This routine fits the Poisson probability model (CDF) of the
Probability of Seeing curve P(I). Uses Matlab's "fminsearch™ algorithm (Simplex)
to optimize the "alpha"™ scale parameter in the Mean Sqguare Error residual for each
element of a set of wvalues for the threshold parameter K.
USAGE : [params, KOPT, AL.PHACPT] = HSP fitModel fminSearch (data,¥,plotResults)
TNPUT : data * [(struct) data structure from experiment
K * ({int wvector) K values to cycle through for optimization (threshold parameter)
plotResults ¥ ({logical) plot results or not [(defaunlt TRUE)
CUTPUT : params ¥ [(matrix) it results
COLUMNS = [K alpha MSE exitFlag]
FKOPT ¥ (int) optimal K walue
ALPHAOPT * (double) optimal alpha wvalue
Comments :
(1) E = threshold parameter (minimum #¥photons for seeing)
{(2) alpha = scale parameter (quantum efficiency)
(3) M5E = mean sSguare error
(4) exitFlag = output of "fminsearch" indicating whether optimization was successful or not
Written by Alex Casti, FDU 12/04/2012

oy

Last updated 12/07/2012




Experimental Setup (Final/Darkroom)
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