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What is Cryptography?

We distinguish between these related concepts:
1) Cryptography: the study of techniques to keep in-
formation secure

2) Cryptanalysis: the study of how to defeat cryp-
tographic methods

3) Cryptology: the study of cryptography and crypt-
analysis




Cryptography in Antiquity

Some past civilizations that exhibited elements of cryp-
tography:

1) Old Kingdom of Eqypt (c. 1900 BC): on monu-
ments; of unclear purpose

2) Mesopotamia (c. 1500 BC): on clay tablets; even
used to hide trade secrets (like pottery glaze recipes)

3) Greece: varied use; even appeared in the Iliad!




Caesar Ciphers

(BFYHM TZY KTW GWZYZX)

Although these are simple enough to be taught to school
children today, they were used by Julius Caesar (c. 60
BC) for secret military communications.

They rely on a shitt of the standard alphabet:

AIBICIDIEIF|IGIH I K[LIMIN|O|PIQIRIS|TIUV W IX]Y|Z]

AN A A A ) ) A A A A A A A
D|E|F|GIH|I|J|K[LIM|N|O|PIQ|R|S|T|UVIWIX|Y|Z]|A|B|C]




Radio Orphan Annie Codes

Radio Orphan Annie Codes
(a.k.a. Simple Substitution Ciphers)
(20,3,9,1,6,1,23,11,25,15,24,8,25,14,20,12,16)

These are more general than Caesar ciphers - the idea
is no longer just to shitt the alphabet, but rather to
create a more random correspondence between letters.

These have been in existence for quite some time (at
least since the Middle Ages); they were popularized on
the Orphan Annie radio show in the 1930s.

Children who listened to the show would join Radio Or-
phan Annie’s Secret Society by sending away for their
decoder badge or pin. At the end of each episode, they
could decode a secret message with it.




Simple Decoder

Here is a simplified version of the decoder!!:

Example: 8.20.17,12.22,21 14,24.11,26,17,12,13
(Key: P)

How easy is this code to “crack” when the decoder is
known?




Simple Decoder

Answer: Just try the 26 different “key” positions until

the encoded messages makes sense.

How easy is the code to “crack”™ when the decoder is

unknown?

Answer: This is harder, but it is possible with frequency

analysis[z} ;

Relative frequency




Hill Ciphers

Into the 20th Century
(Hill Ciphers)

For these ciphers we use matrices, which are ordered
arrays of numbers like:

21

11

We may multiply matrices “row by column’:

a b e\ [ae+bf
c d f)  \ce+df
We may then take an English message, translate it into

its numerical equivalent, and use the matrix to encode
the numbers in pairs:

The message: HILL CIPHER




Hill Ciphers

Numerical equivalent: 8, 9, 12, 12, 3, 9, 16, §, 95, 18

Take the first pair (8,9) and encode with the matrix
above:

(1) () - (9 5a) - (%)

So what? If the matrix has an “inverse” (another ma-
trix that reverses the operations to return the original
numbers), then we may decode the encoded part of the
message (25,17). For this matrix, the inverse is:

-y

Multiply to see that it works!




Hill Ciphers

1 —1 25\ [ 125+ (=1)(7)\ (8
-1 2 17 ) \ (=125 +2(17) /9
How to determine such inverses is studied in a subject
called Linear Algebra:

If a,b, c,d are numbers for which D = ad — bc # 0,

a _b
then the 2x2 matrix (Z 2) , has inverse ( Dc D

Can you prove this? What happens when D = ()7

What is the inverse of (i) ;)‘7

Will something similar work for 3 x 3 matrices?




Hill Ciphers

Even such ciphers are not too difficult to crack with
frequency analysis on pairs of letters.

More modern techniques (such as DES and RSA) are
studied in a subject called Cryptography.

These subjects are not just for tun; they are used for se-
cure financial transactions, communications, and mili-
tary and intelligence operations (see, e.g., www.nsa.gov).
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Cryptographic Protocols

1. THE BI1G PICTURE

Textbooks often use Alice and Bob to represent two
partics involved in message exchanges. The situation
we consider is as follows:

1) Alice and Bob wish to exchange a secret key to en-
crypt/decrypt messages.

2) Alice and Bob may not even know each other.

3) Alice and Bob are communicating over a public net-
work.

How can Alice and Bob set up their secret key exchange
over the public network?




Diffe-Hellmann Key Exchange

Suppose Alice and Bob agree on an invertible matrix
M for a Hill cipher (note that this is done in public).
Then they can generate a shared secret key for commu-
nication over the public network as follows:

1) Alice chooses a random positive integer a and com-
putes M“.

2) Bob chooses a random positive integer b and com-
putes M b

3) Alice sends Bob M® and Bob sends Alice M over
the public network.

4) Alice and Bob hoth compute their shared secret key:
A — pfab — (Ma)b _ (Mb)a,.




Important Questions

What does an eavesdropper, Eve, see over the network?

In general, why can’'t Eve compute A easily from this
information?

What if we now add another person, Carol, to the
ogroup? How can we modity this key exchange so that
all three have a common secret key at the end? Assume
that M is still the agreed-upon initial matrix.




Solution

1) Alice chooses a random positive integer a and com-
putes M“, which she sends to Bob.

2) Bob chooses a random positive integer b and com-
putes (M®)? = M which he sends to Carol.

3) Carol chooses a random positive integer ¢ and com-
putes (M0)e = prabe,

4) Carol then computes M¢ and sends it to Alice.

5) Alice computes M?¢ and sends it to Bob.

6) Bob computes M.

7) Bob computes M b and sends it to Carol.

8) Carol computes MY and sends it to Alice.

9) Alice computes Ma¢,

Now they all have a shared secret key A = M@b¢,




Authentication

The authentication problem occurs in different forms.
Let’s start with the following version:

In order to get on the Internet in the first place, Al-
ice needs to log on to some host device (laptop, smart
phone, etc.). How can Alice verify her identity to the
device?

The standard solution is to use a password. It is not a
good idea to have an unencrypted version of the pass-
word stored on the device in case it is compromised,
so a one-way function is often employed. A one-way
function f is a function such that:

a) for a given input x, f(x) is relatively easy to com-
pute, and
b) given f and f(x), z is difficult to compute.
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Basic Number Theory

Number theory is the study of the integers and their
properties. You are probably already familiar with
some of the basic notions. For example:

Definition: A prime number is an integer p > 1
whose only positive integer divisors are 1 and p.

Definition: The greatest common divisor of two
nonzero integers is the largest positive number that
evenly divides both integers.

Definition: Two integers are relatively prime if their
oreatest common divisor is 1.




Modular or “Clock” Arithmetic

A usetul kind of arithmetic on the integers arises as fol-
lows:

Fix an integer n > 1. Then for any integers a and b,
we define a + b (mod n) as the remainder obtained by
dividing a 4+ b by n.

You are used to arithmetic modulo 12: starting at 11
o'clock and adding 3 hours brings you to 2 o’clock.

We are going to use arithmetic modulo a certain num-
ber that arises as follows:

Definition: Given a positive integer m, ¢(m) is the
number of positive integers less than or equal to m that
are relatively prime to m. We refer to ¢ as the Fuler
totient function.




RSA Encryption
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The Idea Behind RSA Encryption

1) RSA is an acronym for Rivest, Shamir, Adleman.

2) This encryption method is the current standard for
many comimon web browsers.

3) The method is a public-private key system —
two parties who may not know and may not trust each
other can communicate privately over a public network.

4) The method’s security is closely tied to the diffi-
culty of factoring large numbers and /or computing log-
arithms modulo a positive integer n.




RSA Algorithm

1) Construct n = pq, where p # q are primes.
2) Compute ¢(n).

3) Choose an integer 1 < e < ¢(n) that is relatively
prime to ¢(n).

4) Compute d = e~ modulo ¢(n).

Here, n and e constitute the public key, while d is kept
as the private key.




Encryption and Decryption

The plaintext should be an integer 0 < x < n.

The ciphertext is computed as b = ¢ modulo n

The plaintext is recovered by z = b = (xe)d

modulo n.

X

ed




RSA Example

Let’s pick p = 7 and ¢ = 13 to illustrate the algorithm.
Note that these numbers are much too small to be used
in practice!

Now n =pq = 7(13) = 91, and ¢(n) = 6(12) = 72.

The choice of e must be made so that ged(e, 72) = 1,
so e cannot be 2, 3, or 4. However, e = 5 is relatively
prime to ¢(n) = 72. Note that other choices are possi-

ble!

Now we want to find the secret key, d, which must sat-
isty ed = 1 mod 72. Observe that d = 29 satisfies this
condition since 5(29) = 145, which has remainder of 1
upon division by 72.




RSA Example

A message such as £ = 10 would then by encrypted as
b= 2 =10 mod 91, or b = 82 mod 91.

To decrypt and recover the plaintext, we calculate x =
bl = 8229 modulo 91. This is not as bad as it seems
since, modulo 91, we have 821 = 82,822 = 81, 82% =
(8222 = 817 = 0,82% = (82Y)?2 = 92 = 81, and
8216 — 812 = 9. So we use this to reduce 8227 =
(82)16(82)%(82)4(82)! = (9)(81)(9)(82) = 10 modulo
91.




