two FDU students smiling while sharing a textbook and working on a laptop

The Bachelor of Science in Civil Engineering Technology program prepares students in planning, designing and building infrastructure and facilities. Civil engineering technologists work in areas such as transportation, water systems, utilities, structures, pollution control, surveying, soil mechanics and foundations.

The B.S. in Civil Engineering Technology curriculum requires the successful completion of 128 credits. It includes mathematics, basic sciences, English composition and communications, humanities and social sciences, and technical courses.

Professional Accreditation

The B.S. in Civil Engineering Technology program is accredited by the Engineering Technology Accreditation Commission of ABET, https://www.abet.org.

Educational Objectives

The educational objectives of the B.S. in Civil Engineering Technology program define the career and professional accomplishments that the graduates are being prepared to achieve three to four years after graduation. The program will produce graduates who:

  1. Enter into and advance their careers in the planning, design, construction, operation or maintenance of buildings and infrastructures utilizing their theoretical knowledge and practical skills in analyzing and designing systems or structures, specifying construction methods and materials, performing cost estimates and analyses, and inspecting and managing civil projects.
  2. Continue their formal education and obtain advanced degrees such as M.S. in construction management, M.B.A. (industrial management), M.S. in environmental studies, M.S. in technology management or other related fields.
  3. Continue to conduct themselves as both responsible professionals and global citizens who are aware of and who understand ethical issues and societal needs and problems.

These objectives are consistent with the mission of Fairleigh Dickinson University to educate and prepare students as world citizens through global education. They also fulfill the needs of the program constituencies, which include students, alumni, employers, faculty, and the Industrial Advisory Board.

Student Outcomes

Each civil engineering technology graduate will demonstrate the following attributes and achievements as required by the ETAC of ABET upon or before graduation:

  1. An ability to apply knowledge, techniques, skills and modern tools of mathematics, science, engineering, and technology to solve broadly-defined engineering problems appropriate to the discipline;
  2. An ability to design systems, components, or processes meeting specified needs for broadly-defined engineering problems appropriate to the discipline;
  3. An ability to apply written, oral, and graphical communication in broadly-defined technical and non-technical environments; and an ability to identify and use appropriate technical literature;
  4. An ability to conduct standard tests, measurements, and experiments and to analyze and interpret the results to improve processes; and
  5. An ability to function effectively as a member as well as a leader on technical teams.

Cooperative Education or Work Experience Option

Students in the B.S. in Civil Engineering Technology program have the option to undertake a cooperative education experience and earn a total of 6 academic credits toward their technical electives. The co-op experience provides students a real-world grounding, linking theory and practice, academic and industrial experiences, and college education and lifelong learning. It better prepares students for jobs, gives them a competitive edge in the job market, helps them develop networking skills and professional contacts and allows them to experience career fields before graduation. Industry benefits from better-prepared graduates with real and relevant work experience – saving time and money by reducing the training period for new employees.

Instead of undertaking cooperative education, students may earn up to 6 academic credits for appropriately documented industrial experience (Work Experience) counted toward their technical electives. Note that credits earned from industrial experience and/or cooperative education may not be substituted for any required course work and that they altogether may not exceed a total of six credits. Students must have successfully completed the course EGTG2210 Technical Communications before the application for “Work Experience” credits can be considered. The application form and directions for submission of necessary documents in support of the application may be obtained from the office of GHSCSE.

Degree Plan

The program requires the successful completion of 128 credits with a minimum cumulative grade point ratio of 2.00 as described below.

1st Semester (15 credits)

  • ENGR1301 Engineering Practices, Graphics and Design (3 credits)
  • MATH1107 Precalculus (4 credits)
  • PHYS2101 General Physics I (3 credits)
  • PHYS2201 Lab: Physics I (1 credit)
  • UNIV1001 Transitioning to University Life (1 credit)
  • WRIT1002 Composition I: Rhetoric and Inquiry (3 credits)

2nd Semester (17 credits)

  • EGTC1223 Introduction to CAD (2 credits)
  • ENGR3000 Modern Technologies: Principles, Applications and Impacts (3 credits)
  • MATH1201 Calculus I (4 credits)
  • PHYS2102 General Physics II (3 credits)
  • PHYS2202 Lab: Physics II (1 credit)
  • UNIV1002 Preparing for Professional Life (1 credit)
  • WRIT1003 Composition II: Research and Argument (3 credits)

3rd Semester (17 credits)

  • CHEM1201 General Chemistry I (3 credits)
  • CHEM1203 General Chemistry Laboratory I (1 credit)
  • EGTC1205 Surveying I (3 credits)
  • EGTC1245 Construction Materials and Systems (3 credits)
  • EGTG2221 Statics (3 credits)
  • MATH2202 Calculus II (4 credits)

4th Semester (18 credits)

  • EGTC1206 Surveying II (3 credits)
  • EGTG2210 Technical Communications (3 credits)
  • EGTG2228 Strength of Materials (3 credits)
  • EGTG4221 Engineering Statistics and Reliability (3 credits)
  • ENGR1204 Programming Languages in Engineering (3 credits)
  • UNIV2001 Cross Cultural Perspectives (3 credits)

5th Semester (15 credits)

6th Semester (15 credits)

7th Semester (15 credits)

  • EGTC3256 Steel Structures (3 credits)
  • EGTC4263 Project Management and Control I (3 credits)
  • EGTG2215 Circuits I (3 credits)
  • EGTG3211 Materials Technology I (3 credits)
  • EGTG4269 Management and Engineering Economics (3 credits)

8th Semester (16 credits)

  • EGTC3270 Environment and Land Use Planning (3 credits)
  • EGTC4260 Contracts and Specifications (3 credits)
  • EGTC4272 Advanced Steel Design (3 credits)
  • EGTC4385 Civil Technology Design Project (1 credit)
  • Technical Electives (6 credits)

Technical Electives

The student must take 6 credits of technical electives, to be chosen from the following list:

  • CHEM1202 General Chemistry II (3 credits) with CHEM1204 Lab: General Chemistry II (1 credit)
  • EGTC4320 Highway Design (3 credits)
  • EGTC4321 Bridge Design (3 credits)
  • EGTC4322 Hydraulic Design (3 credits)
  • EGTC4323 Seismic Design (3 credits)
  • EGTG3212 Materials Technology II (3 credits)
  • EGTM4356 Stress and Vibration Analyses (3 credits)

Other technical electives may be taken with prior approval from a program adviser. Up to 6 credits for work experience or cooperative education experience but not both may be used in place of technical electives.

Program Enrollment and Degree Data:

The official fall term enrollment figures (head count) of the B.S. in Civil Engineering Technology program for the last five academic years and the number of degrees conferred during each of those years.

Academic Year Enrollment Year Total Degrees Awarded
1st 2nd 3rd 4th
2018 -2019 FT 2 5 6 10 23 Not yet available
PT     1   1
2017 -2018 FT 6 5 10 8 29 12
PT   1   3 4
2016 -2017 FT 14 6 9 13 42 15
PT   1   2 3
2015 -2016 FT 22 12 11 8 53 14
PT 1     4 5
2014-2015 FT 20 15 5 12 52 10
PT 1     1 2

FT- full time, PT- part time

Contact Information
Vahid Alizadeh, Ph.D., P.E.
alizadeh@fdu.edu, Program Co-Coordinator
Contact Information
Marzieh Azarderakhsh, Ph.D., P.E.
mazar@fdu.edu, Program Co-Coordinator
Accreditation

Course Descriptions